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We study wave propagation in a one-dimensional disordered array of scattering 
potentials. We calculate the mean and the variance of the resistance of the array, 
defined as the ratio of reflected to transmitted intensity, for a rather wide class 
of probability distributions characterizing the disorder. Our method is based on 
a mapping of the wave propagation onto the motion of a two-dimensional 
oscillator which is perturbed parametrically. 
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1. I N T R O D U C T I O N  

The problem of wave propagation in disordered one-dimensional arrays of 
scatterers has received a great deal of attention. We refer to reviews by 
Ishii (1/ and by Erd6s and Herndon (2). It was first argued by Landauer (31 
that for the case of electrons in a disordered one-dimensional lattice, 
described by the Schradinger equation with randomly placed potentials, 
the electrical resistivity is proportional to the ratio of reflected to transmit- 
ted intensity of an incident plane wave. This dimensionless quantity is 
called, for brevity, the resistance. He showed, on the basis of some 
simplifying assumptions, that the resistance grows exponentially with the 
number of obstacles, rather than linearly. Exact calculations have confir- 
med this result (2'4) although the growth factor calculated by Landauer 
turns out to be valid only in the classical high wavenumber limit. 
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Erd6s and Herndon (2~ have developed an elegant method for 
calculating both the mean and the variance of the resistance for a fixed 
number of scatterers in a wide class of models. It is of interest to calculate 
the variance as well as the mean, because the distribution of resistance 
broadens rapidly with increasing number of scatterers. (5) The method of 
Erd6s and Herndon ~2/is based on a transfer matrix formalism which leads 
to a multiple product of 4 x 4 matrices for the calculation of the mean and 
to a product of 16 x 16 matrices for the calculation of the variance. Group 
theoretical arguments are invoked to reduce the size of the matrices to 3 x 3 
and 5 x 5, respectively. 

We show here that the calculation of the mean and variance of the 
resistance may be simplified considerably. Our method is based on a map- 
ping of the wave propagation onto the motion of a two-dimensional 
oscillator which is perturbed parametrically. The resistance is proportional 
to the total increase in energy of the oscillator due to the perturbations. 
The formulation leads directly to matrices of reduced size and to explicit 
formulas for the mean and variance of the resistance for a wide class of 
probability distributions of scatterer configurations. The calculation is 
extended to the case where N scatterers are distributed over a fixed 
length L. 

2. TRANSFER MATRICES 

We consider the time-independent Schr6dinger equation describing 
wave propagation through a one-dimensional disordered array of scat- 
terers. With appropriate transcription the calculation applies to classical 
problems, such as acoustic or electromagnetic wave propagation. The time- 
independent Schr6dinger equation reads 

d2~0 
V j ( x -  xj) (2.1) - D ~ + qo(x) = Eq)(x) 

j = l  

where D = h2/2m and E is the energy. We assume that the scattering poten- 
tials do not overlap, are ordered x l < x 2 <  " <XN, and that their 
statistics are governed by a known probability distribution. The effect of a 
single scatterer on an incident plane wave may be described by a transfer 
matrix relating the amplitudes a+ and a of the wavefunction r 
a+ exp(ikx) + a e x p ( - i k x )  to the left of the scatterer to the amplitudes a' + 

and a' of the wavefunction q~(x)=a+ exp( ikx)+a'_  e x p ( - i k x )  to the 
right by 

a 2 ]  J a 
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The 2 x 2 matrix Rj may be written as (2) 

Rj= U*MjUj (2.3) 

with the diagonal matrix 

0 
U'=(exP(0 kxj) exp( -ikxi) ) (2.4) 

and with a matrix Mj which is independent of position�9 The location xj of 
the scatterer may be defined such that Mj has the parametric represen- 
tation 

Mj=(exp(- iyj )coshc~j  - i s i n h 6 j  ) (2.5) 
i sinh 6j exp(iTj) cosh 6j 

with real parameters ?j and 6j which depend on energy. If the potential 
Vj(x-xj) is symmetric, then xj coincides with the center of symmetry. 
More generally the location xj depends on the energy E. We shall choose 
coordinates such that the center Xl of the first scatterer is located at the 
origin x = 0. Clearly this may require a shift of origin dependent on the 
energy. 

The transmission through the array of a wave incident from the left is 
described by the transfer relation 

where T is the transmission coefficient and R is the reflection coefficient. 

W(N) = T* (2.7) 

The transfer matrix 

I 1 
T* 

R 
T 

is given by the product 

W(N)=U~MNG(XN--XN_I)MN_I" "M2G(x2) M 1 (2,8) 

with the propagation matrix 

�9 0 ( 2 . 9 )  G({')=(exP(0 k{') exp(- ik~, ) )  { j=  x j - x i l  

We shall be interested in the statistical distribution of the resistance p 
defined by p = jRI2/ITl 2. 
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3. CLASSICAL M O T I O N  PICTURE 

We shall find it convenient to use the correspondence of the wave 
propagation described above to the motion of a classical harmonic 
oscillator with parametric perturbation. One finds an evident correspon- 
dence to the motion of a one-dimensional oscillator by identifying the 
wavefunction q~ with the coordinate q of the oscillator, D with the mass, x 
with the time, and k = x/--E/D with the frequency. We remark that the 
motion of such an oscillator with added damping has been studied exten- 
sively in the theory of stochastic processes. (6 10) However, a more useful 
correspondence to the motion of a two-dimensional oscillator may be 
obtained in the following manner. We choose two real standard solutions 
ql(x) and q2(x) of the differential equation (2.1) with the properties 

ql(x) = cos kx q2(x) = sin kx x ~ O  (3.1) 

for x sufficiently far to the left of the first scatterer. We regard ql(x)  and 
qz(X), which are real for all x, as the components of the position q(x) of a 
two-dimensional oscillator. The frequency of the oscillator is perturbed 
parametrically as described by the potentials V j ( x - x  j). We put t =  kx so 
that the momentum p = (Pl,  P2) is given by the equations 

p l (x  ) = k _  1 dql pz(x) = k  -1 dq2 (3.2) 
dx dx 

It is clear from (3.1) that (q(x), p(x)) is identified with the motion of 
the two-dimensional oscillator for special initial conditions. As usual it will 
be convenient to use instead of real coordinates and momenta the complex 
amplitudes 

al = ql + ipl a2 = q2 + ip2 (3.3) 

It follows from the transfer matrix formalism of the preceding section 
that the motion (q(x), p(x)) may be mapped uniquely onto the motion of 
an oscillator whose position and momentum change instantaneously by 
hits occurring at instants Xl,...,XN and which oscillates harmonically 
between hits. Outside the range of the potential the two motions are iden- 
tical and it suffices to consider the second one. The harmonic motion 
provides a linear relation between coordinates and momenta (q, p) just 
after the hit at xj_ 1 to those just before the hit at xj 

q' = cjq --}- sip (3.4) 

p' = - s sq  + cjp 
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with the abbreviations 

cj = cos k~j sj = sin k~j (3.5) 

where ~ j=  x ~ - x j _  1- In terms of the complex amplitudes (3.3) this relation 
may be expressed as 

(a*)'/ a~* i =  1, 2 (3.6) 

where the matrix G(~j) is given by (2.9). The effect of the hit occurring at 
xj is described by a linear relation between coordinates and momenta 
(q', p') before the hit to (q', p ')  after the hit 

q" = ujq' + v./p' 

p" = %q' + ujp' 
(3.7) 

with coefficients 

uj = cos 7j cosh 6j vj = sinh 6 / -  sin ?i cosh 6j 

wj = sinh 6j + sin 7j cosh 6j 

which are related by 

(3.8) 

(3.9) 

In terms of the complex amplitudes (3.3) the collision law (3.7) is expressed 
a s  

( a* ) ' ]  = M j  (a*)' i = 1 , 2  (3.10) 

where the matrix M i is given by (2.5). 
During the harmonic motion, both p2 + ql 2 and p~ + q2 2 are conserved 

quantities, but these energies are not conserved at a hit, as may be seen 
from (3.7). However, there is a quantity which is conserved both during the 
harmonic motion and during hits. This quantity may be identified with the 
angular momentum of the two-dimensional oscillator. With the choice of 
initial conditions (3.1) one has 

q l P 2 - q 2 P l  = 1 (3.11) 

or in terms of the complex amplitudes (3.3) 

a * a z - - a l a * = 2 i  (3.12) 

822/43/1-2-18 
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In mathematical terms the quantity (3.11) is just the Wronskian of the two 
independent solutions of the differential equation (2.1). In quantum 
mechanical language the conservation law (3.11) corresponds to the con- 
stant probability current density. 

4. R E S I S T A N C E  

In this section we express the resistance p = IRI2/ITI 2 in terms of the 
classical variables (q, p) defined in the preceding section. To this purpose 
we write the scattering solution of (2.1) corresponding to a plane wave 
incident from the left as a linear combination of the two standard solutions 
defined in (3.1) 

(ps(x) = (1 + R) qa(x) + i(1 - R) q2(x) (4.1) 

Beyond the last scatterer this solution must equal the transmitted wave 

(ps(x) = T exp(ikx), x > XN (4.2) 

We choose a point X which is to the right of XN for all members of the 
ensemble of scatterer configurations. Equating (4.1) and (4.2) at this point 
we obtain 

(1 + R) ql(X) + i(1 - R) q2(X) = Texp(ikX) (4.3) 

Similarly by equating the derivatives at J( 

(1 + R)p l (X)  + i(1 -- R) pz(X) = iTexp(ikX) (4.4) 

Solving for R and T from (4.3) and (4.4) we find 

a~(X) + iaz(X) 
R =  

a l ( X ) -  ia2(X) (4.5) 

2 
T -  exp( - ikX) 

a l ( X ) -  iaz(X) 

Hence the resistance p is given by the simple expression 3 

p --- l~(X) - �89 (4.6) 

where e(X) is the energy of the two-dimensional oscillator after the last hit 

e(X) = �89 al(X) + a~(X) az(X)] (4.7) 

3 This analogy was worked out in collaboration with Professor G. W. Ford. 
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In deriving (4.6) we have made use of (3.12). From (3.1) it follows that the 
initial value of lalJ2+ la212 equals unity. It is known that on average the 
resistance p grows exponentially with the number of hits. In the following 
we show how the mean ( p )  and the variance < ( p - ( p ) ) 2 )  may be 
evaluated for a class of models. 

5. PROPER COLLISION V A R I A B L E S  

It is clear from (4.6) that in order to find the resistance p for a given 
configuration of scatterers we may study equivalently how the energy of the 
oscillator changes in a sequence of hits. Since the harmonic motion conser- 
ves the energy it suffices to study the collision process in more detail. Drop- 
ping a prime on either side in (3.10) and omitting the subscript j specifying 
the event we write the collision law in the abbreviated form 

(a*)') ifl c~* ) \ a * )  i =  1, 2 (5.l) 

where the complex c~ and real fl are related by 

1~12-fl2= 1 (5.2) 

and are given explicitly by (2.5). It would clearly be sufficient to write the 
expression for a~ since the one for (a*)' then follows by complex con- 
jugation. However the form (5.1) is of interest since it shows explicitly how 
the pair (ai, a*) transforms into the pair [a;, (a*) ']  upon collision. We 
shall call the pair (ai, a*) a proper collision variable, or for brevity a 
proper 2 vector. The transformation matrix of the 2 vector is just the trans- 
fer matrix M, but in this connection we shall call it the two-dimensional 
collision matrix and denote it by K 2. According to (3.6) between collisions 
the 2 vector transforms with the propagation matrix G defined in (2.9). In 
this connection we shall denote it as G2. We repeat the explicit form of the 
two matrices 

It is of interest to look for higher order proper collision variables. 
Thus we find by straightforward calculation the proper 3 vector 
(a'a*, a*aj + aia*, alaj) which upon collisions transforms as 

(aia:). ] \ aia: I 
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with the three-dimensional collision matrix 

( 0~ 2 --ic~fi _f12 ) 
K3= 2i~[1 Icgl2q-fl 2 --2io:*fl (5.5) 

i *fl 
The corresponding propagation matrix G3 is given by 

e ike" 0 0 
G 3 = /  0 1 0 (5.6) 

0 e - -  2ikr 

In the same manner one finds a proper 5 vector which transforms upon 
collisions as 

I , ( a*2a*2) '  \ 

(ai 2a*a j + a*aia*2) ' 
a*~4 + 4a*aia*aj + a/Za*2) ' ] 

(a*aia 2 + a!a*a/)' 1 
(a2a 2) / 

/ a .2a.2 ) 
I a*2a*aj+a*aia*2 

= K s  la*2a2+4a*aia*aj+a2a .2 (5.7) 

a*ai a2 + a2ia*aj 
\ a24 

where again (i, j)  = 1, 2 and where the five-dimensional collision matrix K5 
is given by 

Ks= 

~4 __2ic~3fi 
2i0:3fl ~2(1~12 -4- f12 ) 

/--6CX2f12 6ic~fi(lO~]2 + fi 2) 
_2ic~fl3 _fi2(3 ]c~12 + f12) 

, i  \ f14 _2ic~*fl3 

c~2/32 2icq~3 f14 
-- ic~fl(l~[2 + fl 2) --fl2(3 Icq2+fl 2) 2i~*/~ 3 

I~14 + 4 I~12 f12 + j~4 _ 6ic~,fl(1<2 + fi2) _6~.2]~2 / 
| ic~*fl(Lo;12 + fl 2 ) ~'2(]c~12 -- 3fl2 ) - 2kx*3fll 

__ ~ . 2 / ~ 2  2iot* 3fl ~.4 ] 

(5.8) 

The corresponding propagation matrix Gs is diagonal and is given by 

I C 4ik~ 1 e 2ik~ 0 
G5 = 1 (5.9) 

0 e 2ikr 
~, - 4ik~ 

The above matrices are all we need for the discussion of the mean and 
the variance of the resistance p. To conclude this section we note that by 
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taking the real and imaginary parts of the relations (5.4) and (5.7) one 
obtains real proper collision variables expressed in terms of the ps and qs 
which transform with a real matrix. However, the complex formulation is 
more convenient because for the complex variables the propagation matrix 
is diagonal. 

6. P R O B A B I L I T Y  D I S T R I B U T I O N S  

We are now in a position to choose the systems for which the mean 
and variance of the resistance may be evaluated. We restrict ourselves to 
models for which the properties of individual scatterers and the distance 
between scatterers are not correlated. Furthermore, we assume that the 
probability distribution of the scattering parameters (T j, 6j) is the same for 
all scatterers and that the probability distribution of scattering centers is 
governed by a nearest neighbor pair distribution which is the same for all 
pairs. Thus we consider a probability distribution of the form 

N N 

P(xx ,7 , ,61  ..... XN'YN'6N)=6(Xl) H f (x j -x j  1) l-I h(7j, 6J) (6.1) 
j = 2  j = l  

where both f (~)  and h(7, 6) are normalized to unity 

f (~)  d~ = 1 h(7, c5) @dg = 1 (6.2) 
- o o  

As special cases one may consider models where f ( { )  = 6({ - l), so 
that the scatterers are fixed at lattice sites and there is only site 
disorder, I11'123 or where h(7, 6 ) = 6 ( 7 - 7 0 ) ~ ( 6 - g o ) ,  so that all scatterers 
are identical and there is only distance disorder. We recall that for an 
asymmetric scatterer the definition of the center x~ may depend on energy. 
This case is permitted as long as the center is the same for all scatterers 
included in the probability distribution h(Tj, cSj). Averages over either f ( { )  
or h(y, 3) will be denoted by pointed brackets ( - . .  5, whereas the average 
over the complete probability distribution (6.1) will be denoted by ( ' ' ' ) x .  

We shall also wish to average over a subensemble of N scatterers with 
fixed total length L. The corresponding probability distribution is given by 

PL(Xl, 71,61 . . . . .  X N '  ~/N, 6N) 
N N 

=c5(xl) 6(XN--L ) H f (x j -x j  l) I-[ h(Tj, 6j)/FN(L) 
j = 2  j = l  

(6.3) 
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where the length distribution FN(L ) is given by 

N 
FN(L)= (~)(XN--L))N = (6 (L- -  ~ ~j))u  (6.4) 

j=2  

The Laplace transform of the length distribution is 

FN(S) = e-SLFN(L ) dL = (f(s)) N ' 

where J~(s) is the Laplace transform of the neighbor distribution 

(6.5) 

fC(s) = f o  e-scf(~) de, )~(0) = 1 (6.6) 

Averages over the probability distribution (6.3) will be denoted by 
('''>N,L" Evaluation of such an average will involve an inverse Laplace 
transform of a quantity ( >N,s calculated at fixed N and s. 

7. M E A N  A N D  V A R I A N C E  OF THE RESISTANCE 

Using the probability distributions described above we can now 
evaluate the mean and the variance of the resistance. We recall that the 
resistance p is given by the expression (4.6). We define the unit 3 vector 
e2 = (0, 1, 0). Using the initial conditions (3.1) we easily find that for a 
fixed configuration of N scatterers the energy in (4.7) is given by the matrix 
element 

e(X) = (e2 t K3(N ) G3(~N)" �9 �9 G3(~2) K3(1) I e2) (7.1) 

where the matrices K3 and G3 are given by (5.5) and (5.6). Averaging over 
the probability distribution (6.1) we hence find 

(/~}N = (e2 ] ( K 3 ) ( ( G 3  ) (K3  ))  N-I le2) (7.2) 

Similarly, multiplying the distribution (6.3) by the normalization factor 
Fu(L), then taking the Laplace transform as in (6.5) and averaging we find 

( ' ~ ) N , s  = (e2 I (K3)((I~J3(S))  (K3))N-1 I e2) (7.3) 

where the matrix ((~3(s)) is defined by 

(C;3(s)) = e sr a3(~ ) d~ (7.4) 
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We recover the result (7.2) by putting s = 0 in (7.3). The average at fixed N 
and L is now obtained as 

1 
(e)N,L =27ziFN(L ) eSr(~)N,s ds (7.5) 

where the integration path goes from - too  to + ioo in the complex s plane 
to the right of all singularities of the integrand. 

Next we consider the variance of the resistance. We define the unit 
5 vector f3--(0, 0, 1, 0, 0). Again it is easily shown that for a fixed con- 
figuration of N scatterers the square of the energy at the end of the 
sequence of hits is given by 

~2(X)=2(f3IKs(N)G,(~N)'"G,(~2)Ks(1)Ifs)+�89 (7.6) 

where use has been made of the conservation law (3.12). The matrices K5 
and Gs are given by (5.8) and (5.9). Averaging over the probability dis- 
tribution (6.1) we find 

( e2 )N = 2(f3 l ( K s ) ( ( G 5 )  (Ks))N--1 t f3) + �89 (7.7) 

Similarly we find from (6.3) 

(e2-�89 I ( K s ) ( < G s ( s ) ) ( K , ) )  'r If3) (7.8) 

where the matrix (Gs ( s ) )  is defined in analogy to (7.4). The average at 
fixed N and L is obtained as 

ez 1 
(e )U,r=-~+ 2rCiFN(L) (7.9) 

with integration path in the complex s plane from - ioo  to ioo to the right 
of all singularities of the integrand. 

8. E X P O N E N T I A L  G R O W T H  

By specialization of the result (7.1) to a single scatterer we see that the 
energy of the two-dimensional oscillator after one hit has changed from 
unity to Ic~12+/?2, which' according to (5.2) is always larger than 1. Hence 
in contrast to the individual components ~ * ~ * i a l  al and the sum ~a2 a2 always 
increases after the first hit. It follows from (2.7), (3.10), and (5.1) that the 
factor 1cr +/72 may be expressed in terms of the reflection coefficient r of a 
single scatterer by 

ic~12 +/72_ 1 + lrl~ (8.1) 
1 - 1 r l  2 
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Neglect of phase relations between successive scatterers, which is 
correct in the high wavenumber limit, implies that in the matrix (G3)  we 
replace the 11 and 33 elements by zero. Upon substitution in (7.2) only the 
Nth power of the 22 element of (K3) survives and we obtain Landauer's 
result for the average resistance (3) 

(8.2) 
2 \ \  1-];7// 

Similarly it follows from (7.6) that after the first hit the square of the 
energy increases by a factor ([c~l 2+ fl2)2. If we again neglect phase relations 
between successive scatterers and replace all elements in <Gs) but the 
33 element by zero then we find in analogy to the above 

2 2 1 (8.3) <~ )N~7(( l  +41r12 q-lr]4\'~ N 
7i-zTU)  /) +7 

This shows that in this approximation the variance of the resistance 

(t 02 )N-- (10)2 ~. I(G2 )N-- I<G)2 (8.4) 

grows exponentially with a larger exponent than the mean. 
Of course (8.2) and (8.3) constitute only an approximation to the 

correct result. In fact the average (P)N may even show oscillations as a 
function of N, as may be seen explicitly in the examples treated by Erd6s 
and Herndon (2) in their Figs. 14, 15, and 20. The complete calculation 
requires evaluation of a power of the three-dimensional matrix <G3)<K 3 ) 
for the mean of the resistance and of a power of the five-dimensional 
matrix ( G s ) < K s )  for the variance. This may be achieved by standard 
methods. Interesting examples have been investigated by Erd6s and 
Herndon. (2) Here we merely reproduce the explicit expression for the cubic 
equation which determines the growth rate of the mean resistance (P)N. 
From (7.1) we find that this is given by the characteristic equation 
1 2 I -  < (;3 > <K3 )t--0 which reads explicitly 

23 "~ C2 ~2 -~- C 1 ,~ -~- C O = 0 ( 8 . 5 )  

where the coefficients are given by 

Co = [((//2)2 _ i <~2 >12)<1c~12 +//2)  + 4Re((72) <e2//)z) 

- 4 I<c~//>12<//2>3 Iz(2k)l = 

cl = (I <c~=>l 2 - <//2 >2) iz(2k)l 2 + 2<1c~1 z +/ /2> Re((c~e> z(2k)) (8.6) 

- 4Re(<e//> = z(2k)) 

C2 = __< i~12 +//2) _ 2Re((~2 ) z(2k)) 



Reflection of Waves in a One-Dimensional Disordered Array 279 

with z(2k)  given by 

z(2k)  = J'( - 2ik)  = f o  e2'k~f(~) d~ (8.7) 

The  growth  rate of  ( P ) s  is given by In 2i ,  where 2~ is the largest posit ive 
real root  of (8.5). 

9. D I S C U S S I O N  

We have shown that  the m a p p i n g  of the wave p ropaga t ion  in a dis- 
ordered a r ray  onto  the mot ion  of a two-dimensional  oscillator with 
pa ramet r i c  per tu rba t ion  provides  a convenient  me thod  of s tudying the first 
problem.  We remark  that  for the calculat ion of the mean  resistance it suf- 
fices to s tudy a one-dimensional  oscillator. However ,  it follows f rom the 
expression (4.6) relating the resistance to the energy of the oscil lator that  
for the s tudy of the variance and of higher order  momen t s  the extension to 
two dimensions is essential. We presume that  the me thod  m a y  be used with 
success in the more  general context  of  s tochast ic  differential equations.  

In an ensemble where bo th  the number  of scatterers N and the length 
L of the sample  are fixed one can evaluate  the mean  resistance ~P)N,L and 
its variance and s tudy the dependence  on N at cons tant  L. It has been 
suggested (2'13~ that  (P)N,L grows only with the exponent ia l  of x /N ,  
whereas the relative variance decreases with the exponent ia l  of - N  1/4. We 
hope to s tudy this mat te r  analyt ical ly in a succeeding article in which we 
shall apply  the results (7.5) and (7.9) to a system of f - funct ion  scatterers. 
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